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An interesting property of zigzag graphene nanoribbons is the presence of edge states, extended along its
borders but localized in the transverse direction. Here we show that because of this property, electron transport
through an externally induced potential well displays two-path-interference oscillations when subjected either
to a magnetic or a transverse electric field. This effect does not require the existence of an actual “hole” in the
nanoribbon’s geometry. Moreover, since edge states are spin polarized, having opposite polarization on oppo-
site sides, such interference effect can be used to rotate the spin of the incident carriers in a controlled way.
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Graphene, a two-dimensional array of carbon atoms in a
honeycomb lattice, is a very interesting material with un-
usual electronic properties.1–4 It has attracted much attention
since its first experimental realization5,6 as it offers great po-
tential for technological applications while, at the same time,
it has led to the observation of new physical phenomena such
as an anomalous quantization of the Hall effect,2,7 observable
at room temperature, or the manifestation of the Klein tun-
neling paradox in transport,1,8,9 among others. The key to
understand graphene’s peculiarities relies on its band struc-
ture: electronic excitations around the Fermi energy �EF� can
be described by an effective Hamiltonian that mimics the
Dirac equation for massless chiral fermions where the spin is
replaced by a pseudospin �the two inequivalent sites of the
honeycomb lattice� and the speed of light by the Fermi
velocity.4,10 The actual spin plays no crucial role in bulk
samples.

A novel effect unique to graphene appears in graphene
nanoribbons �GNRs�: when the termination of the GNR cor-
responds to a zigzag ordering of the carbon atoms �see Fig.
1�a�� the system presents edge states.11–13 That is, there are
eigenfunctions that are extended along the zigzag nanoribbon
�ZGNR�, but that decay exponentially away from the edges
toward the center of the ZGNR. These states have recently
been observed in graphite surfaces near monoatomic step
edges.14,15 From the theoretical point of view, they can be
easily obtained from either a discrete tight-binding model for
the honeycomb lattice11,12 or a low-energy effective Hamil-
tonian �Dirac equation�.13 If only nearest-neighbor hopping
is considered in the former, the edge states have an exponen-
tially small group velocity vg, which leads to a high density
of states near the EF of the undoped material. These states
have been studied in detail by several authors �see Ref. 4 and
references therein� including the recent proposal of a novel
quantum spin Hall effect in the presence of spin-orbit
coupling.16 When next-to-nearest-neighbor hopping is taken
into account, the edge states become dispersive—they ac-
quire a finite vg—and more stable.17 In addition, electron-
electron interactions lead to a magnetic ordering of the edge
states11,18 and the appearance of an energy gap in the band
structure.18 Since the resulting edge states are then spin po-
larized, several groups have proposed to use them for spin-
tronics applications such as creating pure spin currents19 or
inducing half-metallic behavior with electric fields.18

Here, we analyze electron transport through a ZGNR with

a potential well �PW� created by external gates20 and tuned
in such a way that transport inside the well is governed only
by the edge states. In this case, while the current flow is
essentially homogeneous outside the PW region, it flows
along the edges inside it. We show then that the system be-
haves as a two-path interferometer even though the ZGNR is
structurally homogeneous, an effect unique to the ZGNR
band structure. Interference between the two paths can be
tested by either using a magnetic21,22 or a transverse electric
field to tune the orbital phase difference between the two
branches.

Furthermore, since the ground state corresponds to an an-
tiferromagnetic ordering of the polarization of the two edges,
each path corresponds to a different spin orientation. Then, if
the spin polarization of the incoming electron, set for in-
stance by a ferromagnetic contact, is perpendicular to the
intrinsic spin-quantization axis of the ribbon, the two-path
interference leads to a rotation of the carrier’s spin. Its angle
can be controlled externally, offering an interesting potential
for spintronics.

FIG. 1. �Color online� �a� Scheme of a ZGNR. The energy of a
32-ZGNR as a function of the wavevector along the x̂ axis is shown
for: �b� Ba=0; �c� �BBa= t� /2; �d� �BBa= t�; and �e� �BBa=1.2t�.
The bands connecting the two nonequivalent Dirac points corre-
spond to the edge states.
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We describe the ZGNR in the tight-binding approxima-
tion. The Hamiltonian then reads as H=HGNR

0 +Hext+Hint,
where

HGNR
0 = − t �

�i,j�,�
bj�

† ai� − t� �
��i,j��,�

�ai�
† aj� + bi�

† bj�� + H.c. �1�

describes the ribbon. Here, ai�
† �bi�

† � creates an electron on a
Wannier orbital centered at site ri of the sublattice A �B� with
spin �, t�2.8 eV and t��−0.1t are the nearest- and next-
to-nearest-neighbor hopping parameters, respectively.4 The
symbols � . . . � and �� . . . �� restrict the sum to the correspond-
ing neighboring sites. The borders contain A sites on one
edge and B sites on the other. Hext, which describes the ac-
tion of external gates, is defined below. Finally, Hint de-
scribes the electron-electron interaction. Because of the high
density of states induced by the edge states, the system is
magnetically unstable. Density functional theory and
Hartree-Fock calculations18,23 show that the ground state cor-
responds to an antiferromagnetic ordering of the sublattices’
magnetization. Since the latter is mainly localized at the
edges, we take such interaction into account by introducing
an effective magnetic field only at the edges sites,

Hint = − �BBa�
��

�a��
† a�� − �BBb�

��

�b��
† b��, �2�

where ���� labels the top �bottom� edge. We take this field to
be perpendicular to the plane of the ZGNR �ẑ axis�. In the
ground state the two edges have opposite magnetizations,
Bb=−Ba. The value of Ba should, in principle, be determined
by a self-consistent calculation. Since its precise value de-
pends on the chemical passivation of the edges,24–27 and in
order to discuss different situations, we take it here as a free
parameter.28

Figure 1 shows the energy dispersion of a 32-ZGNR �Ref.
29� for different values of Ba. Several bands originated from
the quantization along the ŷ axis are clearly visible. The
bands in the range kxa� �2� /3,4� /3� that are close to the
Dirac point, E	3t�, are the ones that correspond to the edge
states with a characteristic localization length ��kx��
−3a0 /2 ln
2 cos�kxa /2�
.17 Here, a=�3a0 is the lattice pa-
rameter with a0 the C-C bond length. For Ba=0 �Fig. 1�b��,
there are two of those bands �for each spin orientation� that
are almost degenerated; there is an exponentially small split-
ting between them. They essentially correspond to the sym-
metric and antisymmetric combinations of the exponentially
decaying solutions of each individual edge.4,13,17 For Ba�0
�Figs. 1�c�–1�e��, both the spatial and the spin degeneracies
are broken. For each spin orientation, each band now corre-
sponds to states localized on a different edge. The energy
dispersion is approximately given by E�kx��3t�
+ �t���BBa��2 coskxa+1�. Note that it is nonzero due to the
nonzero value of either t� or Ba.17,30 The key point is to notice
that, for a given energy, the states with opposite spin polar-
ization in the ẑ direction are localized on opposite edges of
the ZGNR.

Let us now consider the transport properties of a ZGNR in
the presence of an electrostatic potential created by external
gates,

Hext = �
i,�

Vgf�xi��ai�
† ai� + bi�

† bi�� , �3�

where f�x� is a smooth function describing a PW of height Vg
�see Fig. 2�a��. For simplicity, we use a sum of Fermi func-
tions, with the parameter 	 playing the role of the tempera-
ture, to set the spatial profile of f�x� �which depends only on
x�. We assume that EF
3t�
0 far from the PW which en-
sures that the current carrying states in that region are ex-
tended throughout the entire width of the ribbon. On the
other hand, Vg
0 can be tuned in such a way that EF−Vg
corresponds to the energy of an edge state. For the sake of
simplicity, we discuss first the conceptually simpler case Ba
=0.30 Then, if f�x� changes smoothly, the electrons’ wave
function will adiabatically change from extended to local-
ized, while keeping its band index and having a position
dependent wave vector kx�x�. Correspondingly, the charge
flow will “split” in two paths inside the well and merge again
afterwards, creating a “hole” in its spatial distribution �Fig.
2�a��. In this way, we have created an interferometer, which
can be tested by introducing a relative phase difference be-
tween the two paths.

As the Aharonov-Bohm �AB� effect provides the simplest
way to do this, we introduce a magnetic field B� perpendicu-
lar to the ZGNR �via a Peierls substitution in the hoppings�
and calculate the zero-temperature conductance using the
Landauer approach.31 For that, we separate the system into a
central region �containing the PW� and the leads’ regions and
use the standard recursive method to obtain the lattice
Green’s functions31,32 and the transmission coefficient from
them. Figure 2�b� shows the conductance G of a 32-ZGNR
as a function of the Vg for different values of B�. It is ap-
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FIG. 2. �Color online� �a� Schematics of the proposed setup and
the potential profile �which depends only on x�. The two-path char-
acter of the current flow allows for interference effects to manifest;
�b� conductance of a 32-ZGNR �W=45a0� as a function of Vg for
different values of B� and EF=−0.6 t, L=2400a, 	=30a, and Ba

=Bb=0. G only changes in the presence of edge states. Inset: G as
a function of B� for Vg / t=−0.384 ���, −0.356 ���, and −0.31 ���.
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parent that G changes with B� only when Vg is below the
threshold where the edge states participate on transport �in-
dicated by the arrow�. The inset shows the oscillatory behav-
ior of G as function of B� for three different values of Vg.
The period is roughly �0 /A��1.3 T with �0 the flux quan-
tum and A��LeffW with Leff��L−4�3.5	�. An increment
of the period, due to the reduction in the effective “hole”
area, is difficult to see since the visibility of the oscillations
is rapidly lost. In addition, and despite this seemly simple
picture, the behavior of the conductance is more involved as
it shows pronounced narrow dips when B��0. This is re-
lated to the fact that bonding and antibonding bands are
mixed by B� �recall that for Ba=0 the splitting is exponen-
tially small� and then both bands get involved in transport,
which in turns leads to Fano-like interference between them
and a reduction in the visibility of the AB oscillations.33

A more interesting situation occurs for Ba�0. As we
mentioned above, in this case, both the spatial and the spin
degeneracies are broken. Therefore, an incoming electron
with its spin quantize along the ẑ axis, will follow either the
upper or lower path �colored arrows in Fig. 2�a�� depending
on whether its spin is “up” or “down.” Clearly, in this case
there is no interference and the conductance is independent
of B�. Nevertheless, it can be readily verified that if the
incoming electron is polarized in the n̂=cosx̂+sinŷ
direction—its spin state being denoted by 
n̂↑�—it will be
rotated


in� =

ẑ↑� + ei
ẑ↓�

�2
→ 
out� =


ẑ↑� + ei�+��
ẑ↓�
�2

, �4�

where � is the relative phase of the transmission amplitude of
the two paths. Due to the symmetry of the setup, the spin
projection remains on the plane of the ZGNR. The probabil-
ity for an electron to keep its spin orientation is cos2�� /2�
and so we expect the conductance between two collinear
ferromagnetic leads34 to oscillate as a function of �. Note that
we have assumed that L�Lcorr, where Lcorr is the spin-
correlation length of the ferromagnetic order along each
edge.35

Figure 3 shows the spin-resolved transmission probability
T�+ for an incident electron with spin 
+�= 
x̂↑� to be trans-
mitted with spin �=� �in the same axis� as a function of Vg
and B�. The relative phase of the two paths is �=2�� /�0,
where �=B�Aeff is the magnetic flux enclosed by the current
flow and Aeff=LeffWeff is the effective area. For our geometry,
the latter depends mainly on the effective width Weff�Vg�,
which is a function of Vg through the energy dependence of
��kx� �Weff�W�coth�W /��−� /W� for � /W�1�. As ex-
pected, the transmission is a simple oscillatory function of
B�. Note that the shorter period corresponds to the maxi-
mum effective area, �0 / �LeffW��1.5 T and that for Vg
�Vg

��−0.5t �threshold for the participation of the edge
states� there are no oscillations. The total transmission T
=T+++T−+ is constant, implying that the effect of the field is
to produce a pure spin rotation. The features that are appar-
ent in the figure for Vg�−0.54t, are related to the presence
of the “w-shaped” edge states band �see discussion below�. It
is worth pointing out that B� cannot be too large to avoid a
transition to a ferromagnetic state �B��2 T �9 T� for a 32-
ZGNR �16-ZGNR��.36

Interestingly enough, there is also a way to produce a
controlled spin rotation using an all-electrical setup. The key
is to change � by inducing a difference between the wave
vectors of the two paths, and therefore changing their relative
plane-wave phase. This can be achieved by applying a small
transverse electrical field that changes the energy of the two
paths, and then the wave vectors, in a small fraction and in
opposite directions. Note that only a change �kx�2� /L is
required. The transverse potential is described by adding a
term VT��yi−W /2�2 /W�f�xi� to Vgf�xi� in Eq. �3�. Figure 4
shows the spin-dependent transmission for this setup. As for
the previous case, there are clear oscillations indicating the
rotation of the spin of the carriers, even for a very small
transverse field ET=2VT /W ��2 �V /Å for VT�5�10−5t�.
Again, the rotation disappears for Vg�Vg

�. The period of the
oscillations is in good agreement with the estimated value
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FIG. 3. �Color online� �a� Density plot of the spin-resolved
transmission T++ as a function of the depth of the potential well Vg

and the perpendicular magnetic field B� for a 32-ZGNR and
�BBa= t� /2, EF=−0.8t, L=2400a, and 	=30a; �b� same for T−+; �c�
magnetic field dependence of T++ �open symbols�; and T−+ �filled
symbols� for Vg / t=−0.53 ��,��, −0.515 ��,��, and −0.51 ��,��.
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FIG. 4. �Color online� �a� and �b� Same as Fig. 3 but as a
function of the transverse electrostatic potential VT. �c� Transverse
electric field dependence of T++ �open symbols� and T−+ �filled
symbols� for Vg / t=−0.544 ��,��, −0.53 ��,��, and −0.515 ��,��.
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�= �kx
+−kx

−�Leff where kx
� is the wave vector of the edge states

with energy EF−Vg+��VT� and �VT� is the average value of
the transverse potential in the corresponding edge state
��VT��VT�coth�Na /��−� /Na� for � /W�1�.

Adiabatic transport is not possible for �BBa� t� as elec-
trons reach a point where vg�0 before they penetrate the
well and are then reflected. However, transport is still pos-
sible due to a resonant mechanism that involves the upper
“w-shaped” edge states band �Fig. 1�. This involves a
Landau-Zener-like transition between bands so that the width
of the resonances increases as the potential profile is more
abrupt. Some of those resonances are already apparent in
Figs. 3 and 4. We note that in Fig. 3, they present a period of
2�0 /Aeff. This is also present when the incident electron has
its spin direction in ẑ, where we would have naively expected
no dependence with B� as the electrons in that case follow a
single path. This is, however, not true as each minimum of
the “w-shaped” band involves edge states for electrons mov-
ing in one direction but extended states for those moving in

the opposite direction— another unique characteristic of the
ZGNR band structure. The phase difference is then related to
half the area of the PW. A detailed analysis33 shows that the
spin rotation is still possible for some of the resonances,
showing that the effect is robust against the precise value of
Ba.

In summary, we showed that ZGNRs present interesting
interference phenomena in the presence of a PW. Moreover,
the spin-dependent structure of the edge states allows for a
controlled rotation of the spin of the carriers by either mag-
netic or electric fields. Since the characteristic of the zigzag
termination seems to be generic37 and robust against
disorder,19 we expect these effects to manifest in less ideal
samples, opening an alternative for spintronics in graphene.
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